首页> 外文OA文献 >A semi-supervised fuzzy GrowCut algorithm to segment and classify regions of interest of mammographic images
【2h】

A semi-supervised fuzzy GrowCut algorithm to segment and classify regions of interest of mammographic images

机译:一种半监督模糊GrowCut算法进行分割和分类   乳房X线照相图像的感兴趣区域

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

According to the World Health Organization, breast cancer is the most commonform of cancer in women. It is the second leading cause of death among womenround the world, becoming the most fatal form of cancer. Mammographic imagesegmentation is a fundamental task to support image analysis and diagnosis,taking into account shape analysis of mammary lesions and their borders.However, mammogram segmentation is a very hard process, once it is highlydependent on the types of mammary tissues. In this work we present a newsemi-supervised segmentation algorithm based on the modification of the GrowCutalgorithm to perform automatic mammographic image segmentation once a region ofinterest is selected by a specialist. In our proposal, we used fuzzy Gaussianmembership functions to modify the evolution rule of the original GrowCutalgorithm, in order to estimate the uncertainty of a pixel being object orbackground. The main impact of the proposed method is the significant reductionof expert effort in the initialization of seed points of GrowCut to performaccurate segmentation, once it removes the need of selection of backgroundseeds. We also constructed an automatic point selection process based on thesimulated annealing optimization method, avoiding the need of humanintervention. The proposed approach was qualitatively compared with otherstate-of-the-art segmentation techniques, considering the shape of segmentedregions. In order to validate our proposal, we built an image classifier usinga classical multilayer perceptron. We used Zernike moments to extract segmentedimage features. This analysis employed 685 mammograms from IRMA breast cancerdatabase, using fat and fibroid tissues. Results show that the proposedtechnique could achieve a classification rate of 91.28\% for fat tissues,evidencing the feasibility of our approach.
机译:根据世界卫生组织的资料,乳腺癌是女性最常见的癌症。它是全世界女性中第二大死亡原因,成为最致命的癌症形式。乳腺X线图像分割是考虑到乳腺病变及其边界的形状分析,是支持图像分析和诊断的一项基本任务。然而,一旦高度依赖于乳腺组织的类型,乳腺X线图像分割是一个非常困难的过程。在这项工作中,我们提出了一种基于GrowCutalgorithm修改的新闻半监督分割算法,一旦专家选择了感兴趣的区域,就可以执行自动乳房X线图像分割。在我们的建议中,我们使用模糊高斯隶属函数来修改原始GrowCutalgorithm的演化规则,以估计像素是对象还是背景的不确定性。该方法的主要影响是,一旦消除了对背景种子的选择,就可以大大减少专家在初始化GrowCut种子点以执行精确分割方面的工作。我们还基于模拟退火优化方法构造了自动点选择过程,从而避免了人工干预。考虑到分割区域的形状,将提出的方法与其他最新的分割技术进行了定性比较。为了验证我们的建议,我们使用经典的多层感知器构建了图像分类器。我们使用Zernike矩提取分段图像特征。该分析使用来自IRMA乳腺癌数据库的685个乳房X线照片,使用脂肪和肌瘤组织。结果表明,所提出的技术对脂肪组织的分类率可以达到91.28%,证明了该方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号